

CODING OF ACOUSTIC STIMULI TONOTOPIC REPRESENTATION

by Florian Scholz Seminar Physiology 31.03.2016

"Tonotopy | Mapping of partial frequencies of a sound event at particular areas of the cochlea + Mapping of frequency perception at particular areas of the cerebral cortex."

SOUND WAVES - STIMULUS FOR HEARING

- Sound pressure | local deviation from ambient pressure caused by sound wave (pascal)
- Frequency | number of sound pressure oscillations per unit time | frequency directly related to wavelength | pitch (Hz)
- Wavelength | long low tone, short - high tone
- Sound intensity | (watt/m2), sound pressure and particle velocity (watt/m²) amplitude

HUMAN AUDITORY FIELD

- Sound pressure level (dB)| effective pressure of a sound relative to a reference value, used to simplify deviations in
- IOx Increase in sound pressure = rise in SPL of 20 dB
- IOx difference in SP perceived as twice as loud

- Loudness (phon)| subjective measure, SPL + duration
- I 6-2000 Hz audible frequency | lowest sound pressure at 1000 Hz 3x10^-5
- 120-140 dB threshold for painful sound intensity, dependant on frequency

Picture source: Color Atlas of Physiology 6th edition, Stefan Silbernagl, MD, Agamemnon Despopoulos, MD, 189 color plates by Ruediger Gay and Astried Rothenburger, Thieme 2003, ISBN 978-3-13-545006-3

HEARING

mechanoelectric transduction of sound signal

Impedance Matching | 22x pressure amplification Attenuation | decreased intensity, protection, masking, sensitivity

CONDUCTION OF SOUND WAVE

- Perilymph + Endolymph
- Movement of perilymph forward: stapes in

backward: stapes out

- Basilar membrane
- Organ of Corti
- Decrease intensity of travelling wave

BASILAR MEMBRANE + RESONANCE

- Basilar Fibers | 20-30000, stiff, elastic, fixed to modiolus, other end free
- Length | increase from oval window to helicotrema
- Diameters | decrease from oval window to helicotrema
- high frequency resonance | at base
- Low frequency resonance | near helicotrema

Sound wave enters | basilar membrane bends towards helicotrema

RESONANT POINT

- Amplitude pattern of basilar Membrane | extend of Vibration of basilar Membrane During whole Vibration cycle for a certain frequency
- Initial fast wave | high frequencies can separate
- Initial weak wave | becomes strong at portion with natural resonance frequency equal to respective sound frequency
- After Resonant Point | wave Quickly dies easy vibration takes up energy

- Place of Max. Amplitude of Stimulation | discrimination of frequencies
- Tonotopic Organisation
- Volley frequency principle | distal end stimulation by all frequencies below 100Hz, distinguished in cochlear nuclei

Picture source: Color Atlas of Physiology 6th edition, Stefan Silbernagl, MD, Agamemnon Despopoulos, MD, 189 color plates by Ruediger Gay and Astried Rothenburger, Thieme 2003, ISBN 978-3-13-545006-3

ORGAN OF CORTI FUNCTION

- Generation of nerve Impulses | in response to basilar Membrane Vibration
- Inner hair Cells | 90-95% of nerve endings | Type | fibers | Sound perception
- Outer hair Cells | 3x as many | Type 2 fibers | "tuning" function

ENDOCOCHLEAR POTENTIALS

- Stereocilia in Endolymph | high K+, low Na+
- Cellbodies in Perilymph
- Electric potential
- Intracellular negative potential
- -70mV to perilymph
- -I 50mV to endolymph | higher sensitivity
- K+ constantly secreted by stria vascularis

HAIR RECEPTOR POTENTIAL + EXCITATION OF AUDITORY NERVE FIBERS

- Ca. 100 stereocila per hair cell
- Tip links to subsequent stereocilia
- Disposition of Stereocilia | Opening 200-300 cation channels
- Potassium influx from scala media
- Depolarization | opening Ca2+ channels
- Excitation of auditory nerve fiber via Glutamate
- Mechanoelectric transduction

Determine frequency and therefore pitch we here, also wavelength so high or low ton

CODING OF SOUND STIMULI

Determining frequency (quality)| "place principal", neural pathway starts at frequency specific part of cochlea and ends in frequency specific region in cortex | tonotopic organization,

Determining Loudness (quantity)| higher amplitude - higher excitation rate, Spatial Summation, Outer hair cells stimulated

Direction of Sound | lag time + difference in Intensity, medial and superior Olivary nucleus

Distance | High frequencies attenuated faster, lower proportions of high frequencies, the longer the sound travels

CENTRAL AUDITORY MECHANISM

- Signal from one ear travels bilateral
- 3 crossing over sites
- Spatial orientation of fiber tracts | Cochlear nuclei, inferior colliculi, cortex
- Sup. Olivary nucleus | detection of direction of sound
- No direct transmission of sound from ear dissection on impulse level
- Cortical neutrons respond only to small range
- Lateral inhibition
- Firing Rate

TONOTOPIC ORGANISATION

Inferior Colliculus

Cortex

Inf. Colliculus divided to subregions/ sub-nuclei | response to high and low frequencies

Picture source: http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/localization/localization-slides/Slide3.jpg

Picture source: http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/localization/localization-slides/Slide5.jpg

DETECTION OF DIRECTION OF SOUND

"Physiology" 5th edition, Linda S. Constanzo, Elsevier 2014

"Textbook of Medical Physiology" 11th ed, A. Guytoon, J. Hall, Elsevier 2006

"Color Atlas of Physiology" 6th edition, Stefan Silbernagel, Thieme 2009